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Summary

This report describes a simple model for the effect of domain-irrelevant contextual
information on the probative value of expert witness testimony. The model confirms
prior observations by Thompson that such information always decreases the
probative value. In addition, the effect holds regardless of whether the individual
evidence items are conditionally independent or not.

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.



1. Introduction

Context bias refers to the effect of domain-irrelevant information on the testimony
of an expert witness.! An example of context bias is where a fingerprint examiner
declares a match between a suspect’s reference fingerprint and a very blurred latent
print found at a crime scene after the examiner has been informed that a witness
has identified the suspect at the scene of the crime, but would have declared the
examination “inconclusive” if he did not know about the witness. General
discussions of the context bias issue have pointed out that professional forensic
examiners often resist efforts to “blind” them to such contextual information.2 In
some cases they argue that contextual information may help them in their
examinations, and in other cases they strongly deny that such information affects
their judgments. Advocates for blinding often point to experimental demonstrations
that context bias affects the judgment of experts in fields such as medicine, and have
begun to study the effect directly within the population of forensic examiners.34

Recently Thompson has developed a simple model based on a Bayesian network to
examine the effect of contextual information on forensic expert decision-making.>
In this network model, an artificial conditional dependence is created between the
evidence items proffered by two expert witnesses. Thompson demonstrates that
under reasonable assumptions about the effect of the contextual information on the
conditional probabilities of the second expert’s evidence, the probative value of the
his testimony is always decreased if he is exposed to the first witness’s conclusions.
Thus, if the link between the testimonies of the two witnesses is ignored, the
probative value of the combined evidence is overestimated.

This model, while intuitively appealing, presents some formal difficulties. For
example, the origin of the contingency matrices that describe the decision process of
the second witness is not transparent. Moreover, it leaves open the question of what
happens if there is, in fact, an actual conditional dependence between the two
evidence items. Finally, the formal structure of Bayes’s rule for multiple evidence
items® can engender the false intuition that each expert must consider (and thus
must be informed of) the other items of evidence in order to render accurate
testimony. The analysis in this report attempts to clarify these issues.

Section 2 sets up the formal problem of combining two evidence items using
Bayesian reasoning analogous to the model represented by Thompson’s Bayesian
network. The origin of the decision matrices is clarified by the introduction of a
fictitious “meta-expert” who tests the performance of the two experts objectively
and reports those results to the Bayesian “jury.” The description of the meta-
expert’s test procedure makes the operational meanings of “conditional
independence” and “context bias” transparent.

Section 3 discusses the phenomenology of bias within the model. Consistent with
Thompson’s observations, the probative value of evidence that is “contaminated” by



another witness’s evidence decreases. Moreover, this effect persists even if there is
an objective conditional dependence between evidence items. The generality of the
model allows us to consider cases where the second expert is mis-informed about
the findings of the first.

The final section offers a summary of the results and conclusions of this study. An
important connection exists between modeling bias and understanding how to
validate the performance of expert witnesses who rely on subjective judgment. A
general rule is that the potential for bias is eliminated when the conditions of an
expert’s testimony match the conditions under which his performance is validated.

2. Combining evidence in a Bayesian court

We imagine that the jury is a Bayesian machine for converting evidence expressed
as categorical assertions into the posterior probability of some hypothesis H against
an alternative hypothesis A.67 For simplicity, we assume that there are two pieces
of evidence E; and Ez, and each piece of evidence has two states T and F (true and
false.) For example expert 1 testifies that, after examining the evidentiary material
he has been given, in his opinion “E1 = T” or “E1 = F”. The jury takes the opined
values of E1 and E; and determines the probability of H using Bayes’s equation:

P(E,|E, A)P(E;|A)P(4)] 1 1)
P(E,|E{H)P(E1|H)P(H)

P(H|E,E,) = [1 +

We will consider the experts to be “black boxes” whose decisions are characterized
by matrices providing the probability that the expert will decide E1 = T or F, given
that the evidentiary material was collected in a situation where the hypothesis or its
alternative was true. In other words, the matrices represent P(E1|X), and P(Ez|E1X)
where X = H or A. We will call these the “decision matrices” for the experts. We can
take them to be empirical quantities, based on years of blind testing with mock
evidence.

It is convenient to borrow a notion from Cole and imagine a meta-expert who, after
each expert states his opinion, provides the jury with the appropriate decision
matrix to use in its calculation.® How does the meta-expert determine P(E1|H) and
P(E1|A)? He provides the expert with many exemplars of evidentiary materials that
have been generated under conditions of H or A respectively. Then he notes the
value of E1 generated by the expert for each exemplar. In this testing process, the
meta-expert knows which exemplars are “H” and which are “A” but the expert does
not. In other words, the expert is blinded to H and A when he performs his
examination.

Similarly, in order to determine the correct decision matrix for expert 2 the meta-
expert has to determine how the expert decides the state of E> under four
conditions: X =H or A, and E1 = T or F. Itis important to understand that, by the
same logic used to determine P(E1|H) and P(E1|A), expert 2 is blind to both E; and X.



If it is found that the empirical P(E2|E1H) or P(Ez|E1A) depend on the state of E1
even though the expert does not know if E; = T or F, we say that Ez is conditionally
dependent on E;.

In the case that E1 and E; were conditionally independent, the data would show that
P(Ez|E1 = T,H) = P(E2|E1 = F,H), and this is equivalent to saying that P(Ez|E1H) =
P(Ez|H). Of course, sometimes one can tell that E1 and E> are conditionally
independent simply by asking the question “might an expert decide the state of E>
differently if E1 were T or F, given that he does not know which it is?”

3. Modeling expert bias

The implication of the previous section is that the meta-expert provides a decision
matrix for expert 2 that is based on how expert 2 performs when blinded to the
state of both X and Ei. So if expert 2 had been exposed to knowledge about E1
before rendering a decision, and if this state of knowledge changed his decision
matrix, the jury’s calculation would clearly be wrong.

There are two potential remedies for this. One is that the meta-expert could
determine a decision matrix for the case that the expert has been told the value of E;
prior to his decision. Note that, to be thorough, the meta-expert must provide 8
different sets of evidentiary exemplars to be evaluated by expert 2: X=Hor A, E1 =T

or F,and E, = T or F, where ‘E, is the variable describing what expert 2 has been told

about the state of E;. However if E; and E; have been determined to be conditionally
independent, E1 can be left out and only four cases apply. Assuming that this is the

case, the meta-expert now reports to the jury the decision matrix P(E2|E1X) where X
=HorA,and‘E, =TorF.

The distinction between E1 and ‘E1, while subtle, is crucial from a formal point of

view. Since it does not make any sense to say that expert 2 is “blinded” to ‘E, it

should be regarded as a parameter that controls the test conditions under which the
decision matrix elements P(Ez|H)and P(Ez|A) are empirically determined. During
these tests, the expert is not told whether the exemplars were constructed under H
or A, but tests are conducted under conditions where the expert is provided with the

information that the value of ‘E1is T or F. In this sense ‘E; is like any other

parameter that might affect the accuracy of the expert’s decisions, such as visual
acuity or IQ.

Another potential remedy involves the meta-expert providing the jury with a model
for estimating P(Ez|E1X), based on the known P(Ez|X). A simple intuitive model of

how information about E; can affect the decision matrix is motivated by the
observation that in the extreme “completely biased” case where the expert simply

“matches” Ez to ‘E1 and ignores all other information, P(E2|E1X) can be replaced by a



function P(Ez|E1) which provides the 1:1 mapping between the value of ‘E; and the
value of E2 provided by the expert. Thus, a plausible single parameter interpolation
between the “no bias” situation (where the expert ignores ‘E1) and the “completely
biased” case is given by the two equations:

P(E2|E1H) = (1-B)P(E2|H) + PP(E2|E1) (3a)
0<p=1
P(E2|E1A) = (1-B)P(E2|A) + BP(E2|E1) (3b)

The parameter { reflects the degree of bias introduced by E1. The meta-expert

might testify that for evidence exemplars similar to the one examined by expert 2 in
the case at hand, empirical studies have indicated a certain value for .

Note that as f increases, the likelihood ratio associated with expert 2’s evidence
becomes closer to 1, and his testimony becomes more and more irrelevant. Thus,

changes to the decision matrix due to influence of ‘E1 on expert 2 always reduce the

posterior probability. If the jury (or meta-expert) are not aware that expert 2 was
so influenced, and use the unbiased decision matrix P(Ez|X), the posterior
probability for H will be exaggerated and the probability of a false positive finding
will be increased.

Our discussion so far has assumed that E; and E2 are conditionally independent.
Suppose instead that they are not, and the state of E1 will influence expert 2’s
decision about the state of E2 even when he is not aware of what the state of E1

actually is. If expert 2 hears E; before making his decision, precisely the same
considerations hold, although the meta-expert now must determine the decision
matrix P(Ez|E1,X,’E1). The simple model given by equations (3) could be applied
equally well, mutatis mutandis, and the same conclusions hold.

Conceptual separation of E1 and E1 also allows us to consider cases where expert 1

decides one thing but expert 2 hears another. Suppose, for example, that in such a
case the jury hears the testimony of expert 2 first, followed by the testimony of

expert 1. Expert 2 does not inform the jury or meta-expert that he has heard E1, and
there is no opportunity to reconsider his evidence in light of the actual testimony of
expert 1. If P(E2|E1) is diagonal, indicating a tendency to “match” evidence the

model represented by equation (3) obviously predicts that this would not effect the
likelihood regardless of the value of f.



4. Summary and conclusions

The expansion of P(E1,Ez|H) into P(Ez|E1 H)P(E1|H) does not mean that expert 2
must be informed of E1 in order to make his decision about E;. Instead, it means
that the “meta-expert” who determines the conditional probabilities that
characterize expert 2’s performance must be sure that his test materials contain
instances where E1 is varied - but like H, not revealed to expert 2 during testing. If
E1 and E: are conditionally (in)dependent, the unknown state of E1 will(not) affect
the performance of expert 2. This makes it clear that if E1 and E2 are conditionally
dependent, there is some sort of objective causal connection between the two types
of evidence.

If expert 2 is informed of E; prior to his decision, the decision matrix determined
under the testing conditions just described will not be appropriate, and the
posterior probability of H is likely be overestimated if that matrix is used in the
computation. To determine the correct posterior a decision matrix determined
under test conditions where expert 2 is informed by E; should be substituted. On
the general intuitive grounds that led to equations (3), this modified matrix will
result in a lower likelihood ratio for expert 2’s testimony, and a lower posterior
probability of H.

These conclusions hold regardless of whether or not E; and Ez are conditionally
independent. However, it is appealing to say that expert 2 creates a conditional

dependence, the causal process being the influence of ‘E1 on his own mental state. In

this regard it is clear that experts whose decisions are based on subjective criteria
are most susceptible to this kind of influence. An especially dangerous situation
arises when the expert acts as his own meta-expert and attempts to inform the jury of
both his conclusion and the likelihood ratio associated with it.

What sort of evidence should be withheld from an expert who uses subjective
criteria for reaching a decision? The above analysis makes it clear that when there
is an objective means for determining the decision matrix under the condition that
the expert has been informed of other evidence, then there is no reason to withhold
that evidence from him. In the absence of such means, all other evidence should be
withheld, even when there is a conditional dependence between his evidence and
others. In general, the conditions of his testimony should match the conditions
under which his decision matrix (likelihood matrix) was determined.
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